
Jellyfin
Installation
Basic Configuration
Hardware Acceleration (GPU)
Metadata
Design Tweaks

Installation
1. Install Packages

2. Setup reverse proxy

In your new Jellyfin installation, head over to the Admin Dashboard -> Advanced -> Networking and
disable HTTPS (if enabled), then add your local host (127.0.0.1) to the known proxies, to allow
NGINX to act as a reverse proxy. After that, restart your Jellyfin server.

Create a new VHOST in NGINX, /etc/nginx/sites-enabled/streaming.example.org and insert the following
configuration (adapting the servername etc. of course):

sudo apt install apt-transport-https gnupg lsb-release
curl -fsSL https://repo.jellyfin.org/debian/jellyfin_team.gpg.key | gpg --dearmor -o /etc/apt/trusted.gpg.d/debian-
jellyfin.gpg
echo "deb [arch=$(dpkg --print-architecture)] https://repo.jellyfin.org/debian $(lsb_release -c -s) main" | sudo
tee /etc/apt/sources.list.d/jellyfin.list

sudo apt update
sudo apt install jellyfin

sudo systemctl enable --now jellyfin.service
sudo systemctl restart jellyfin.service

sudo systemctl restart jellyfin

upstream jellyfin {
 server 127.0.0.1:8096;
}

server {
 listen 443 ssl http2;
 listen [::]:443 ssl http2;
 server_name streaming.example.org;
 ssl_certificate /etc/ssl/...;

You can now reach your Jellyfin instance over streaming.example.org.

 ssl_certificate_key /etc/ssl/...;
 ssl_trusted_certificate /etc/ssl/...;

 location / {
 proxy_pass http://jellyfin;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto https;
 proxy_set_header X-Nginx-Proxy true;
 proxy_redirect off;
 }

}

server {
 listen 80;
 listen [::]:80;
 server_name streaming.example.org;
 return 301 https://$server_name$request_uri;
}

Basic Configuration
1. Creating a library
Before you can start adding media to your server, you have to create a library. You can choose
between different content types. Select the one appropriate for the content you want to add. I will
start by creating a library for my movies, so I choose movies from the drop-down and continue.
Most of the library settings are self-explanatory. Some options, however, are worth mentioning, so
here is a small overview:

Option Recommendation

`Enable chapter image extraction` Only enable this option, if you have a rather powerful CPU
and on top of that, lots of free storage space. If you do
have, this will give you preview images, when skipping
through a video.

`Extract chapter images during the library scan` You can safely disable this option, because using plugins
like Fanart will provide much better images, for all the
different display sizes (Banner, Poster, etc.)

2. Adding media
To add media, e.g. a movie, make sure, that you have the necessary storage capacity on the path,
you specified in your library settings. After that, I would recommend creating a new folder for every
movie, which you can organize in subfolders, if needed (e.g., for a movie series). Here is a small
tree view of how I organize my movies:

|-- Movie_001
| |-- 1.\ first\ in\ the\ series
| | |-- Some_Movie_Part1 - 1080p - [imdbid-tt0000000].eng.srt
| | |-- Some_Movie_Part1 - 1080p - [imdbid-tt0000000].ger.srt
| | |-- Some_Movie_Part1 - 1080p - [imdbid-tt0000000].mkv
| | |-- Some_Movie_Part1 - 1080p - [imdbid-tt0000000].nfo
| | |-- backdrop.jpg
| | |-- banner.jpg
| | |-- clearart.png
| | |-- disc.png
| | |-- folder.jpg
| | |-- landscape.jpg
| | `-- logo.png

As you can see, you can specify many options in the filename, to make Jellyfin aware of certain
properties. Here are a few:

Option What it does

`[tmdbid=xyz]` / `[imdbid=xyz]` Specify which IMDB/TMDBID the movie has, so the
according metadata gets fetched automatically.

`.sample` `.trailer` `.theme` .`interview` `.featurette` Let Jellyfin know, that the file is a
sample/trailer/theme/interview/featurette file.

`[1080p] [720p]` `[480p]` Usually unnecessary, but in case, it's missing in the files
metadata, let Jellyfin know, what resolution the video has.

FYI, instead of giving your videos file extensions like .trailer you can also place the files in
subfolders, to keep it more structured. Supported names for subfolders are:

behind the scenes
deleted scenes
interviews
scenes
samples
shorts

| |-- 2.\ second\ in\ the\ series
| | |-- Some_Movie_Part2 - 1080p - [imdbid-tt0000001].eng.srt
| | |-- Some_Movie_Part2 - 1080p - [imdbid-tt0000001].ger.srt
| | |-- Some_Movie_Part2 - 1080p - [imdbid-tt0000001].mkv
| | |-- Some_Movie_Part2 - 1080p - [imdbid-tt0000001].nfo
| | |-- backdrop.jpg
| | |-- banner.jpg
| | |-- clearart.png
| | |-- disc.png
| | |-- folder.jpg
| | |-- landscape.jpg
| | `-- logo.png
|-- Movie_002
| |-- Some_Other_Movie - 1080p - [imdbid-tt0000002].ger.srt
| |-- Some_Other_Movie - 1080p - [imdbid-tt0000002].mkv
| |-- Some_Other_Movie - 1080p - [imdbid-tt0000002].nfo
| |-- backdrop.jpg
| |-- disc.png
| |-- folder.jpg
| `-- logo.png

featurettes
extras - Generic catch-all for extras of an unknown type.
trailers

You can also find information on the above mentioned topics in the Jellyfin documentation:
https://jellyfin.org/docs/general/server/media/movies.html

https://jellyfin.org/docs/general/server/media/movies.html

Hardware Acceleration (GPU)

1. Finding a suitable GPU
The recommended way for hardware acceleration is to use a dedicated GPU. The usual
manufacturers are AMD and Nvidia. However, experience has shown, that despite Nvidia's flawed
Linux support regarding drivers, it is still the more performant and stable option, for transcoding
media files (specifically HEVC). If you are wondering, which GPU is affordable and also supports all
the common codecs, I can recommend you to take a look at the following matrix provided by
Nvidia: https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new. Make sure,
that your GPU supports at least H.265 (4K YUV 4:2:0), since there are still a lot of clients, that don't
support the rather new codec. Keep in mind, that using an old "Gaming" GPU might not be the best
option for you, because they consume a lot of power and furthermore are locked to a maximum of
3 concurrent sessions. So if you have more than three people streaming video at any given time,
you'll run into problems. This leaves Nvidia's Professional/Datacenter GPU's. My recommendation
for a cheap, low power consuming and free of restrictions GPU is the Nvidia Quadro P2000. With its
5GB of GDDR5 VRAM, it has enough power, to allow a whole family to stream HQ content. If you
know, that you don't exceed the session limit, the cheaper Nvidia Quadro P400 might be of interest
to you. With that out of the way, you can continue to install the Nvidia drivers.

2. Installing NVIDIA drivers
Before installing the drivers, make sure, that you meet all requirements:

☑ Supported kernel version (https://docs.nvidia.com/cuda/cuda-installation-guide-
linux/index.html#system-requirements)
☑ CUDA capable GPU
☑ NVENC and NVDEC cabable GPU

To start off, make sure, that your /etc/apt/sources.list file includes the contrib and non-free
repositories. E.g. the following:

This section only covers setup for Nvidia GPUs

deb http://deb.debian.org/debian/ bullseye main contrib non-free
deb-src http://deb.debian.org/debian/ bullseye main contrib non-free
deb http://deb.debian.org/debian/ bullseye-updates main contrib non-free
deb-src http://deb.debian.org/debian/ bullseye-updates main contrib non-free

https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p2000-data-sheet-us-nvidia-704443-r2-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/productspage/quadro/quadro-desktop/quadro-pascal-p400-data-sheet-us-nv-704503-r1.pdf
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements

Next, update all packages and install the nvidia-driver package.

Make sure, that the default nouveau drivers are blacklisted, by running cat /etc/modprobe.d/nvidia-
blacklists-nouveau.conf

If all is set, reboot your machine. You should be able, to verify the loaded drivers now, by running
lsmod | grep nvidia :

Additionally, for monitoring purposes, you can install nvidia-smi . Simply run the following command:

This allows you, to see your GPU's current status:

apt update
apt -y install nvidia-driver firmware-misc-nonfree

You need to run "update-initramfs -u" after editing this file.

see #580894
blacklist nouveau

nvidia_uvm 1273856 0
nvidia_drm 73728 0
drm_kms_helper 278528 1 nvidia_drm
nvidia_modeset 1146880 1 nvidia_drm
nvidia 40828928 2 nvidia_uvm,nvidia_modeset
drm 618496 4 drm_kms_helper,nvidia,nvidia_drm

apt -y install nvidia-smi

~# nvidia-smi
Mon Jul 11 13:33:22 2022
+---+
| NVIDIA-SMI 515.48.07 Driver Version: 515.48.07 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+============		
==========		
0 Quadro P400 Off	00000000:03:00.0 Off	N/A
45% 49C P0 N/A / N/A	0MiB / 2048MiB	0% Default

2.1 Installing CUDA Toolkit

First, remove outdated signing keys, by running

After that, setup the CUDA repository:

Update your repositories and install CUDA:

After a successful installation, reboot your system.

2.2 Compiling FFmpeg
Before you start, install the following packages, if missing:

After that, clone the ffnvcodec and FFmpeg repository.

| | | N/A |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===
==========|
| No running processes found |
+---+

This only works on systems with x86_64 architecture

apt-key del 7fa2af80

wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/<arch>/cuda-keyring_1.0-1_all.deb

dpkg -i cuda-keyring_1.0-1_all.deb

apt update
apt -y install cuda

apt -y install build-essential yasm cmake libtool libc6 libc6-dev unzip wget libnuma1 libnuma-dev pkg-config

Install ffnvcode:

Configure FFmpeg:

Compile FFmpeg:

Install libraries

Check your installation, by running ffmpeg . If you run into the following error

you need to make a change to the /etc/ld.so.conf config file. First, find out, where the library is
located:

This returns /usr/local/lib as the location. Simply add this information to the above config file and
run

You should now be able to enable Hardware Acceleration in Jellyfin. Head over to your Jellyfin Web
GUI and navigate to Administration -> Dashboard -> Playback and set Hardware Acceleration to Nvidia
NVENC . Depending on your GPU, you can enable hardware decoding for the supported Codecs. To
test, if the GPU is actually doing the work, run a movie, and check nvidia-smi for running processes:

git clone https://git.videolan.org/git/ffmpeg/nv-codec-headers.git
git clone https://git.ffmpeg.org/ffmpeg.git ffmpeg/

cd nv-codec-headers && sudo make install && cd ../ffmpeg

./configure --enable-nonfree --enable-cuda-nvcc --enable-libnpp --extra-cflags=-I/usr/local/cuda/include --extra-
ldflags=-L/usr/local/cuda/lib64 --disable-static --enable-shared

make -j 8 # Change according to available Threads!

make install

ffmpeg: error while loading shared libraries: libavdevice.so.52: cannot open shared object file: No such file or
directory

find / -name "libavdevice.so.52"

ldconfig

~# nvidia-smi
Mon Jul 11 13:50:25 2022

+---+
| NVIDIA-SMI 515.48.07 Driver Version: 515.48.07 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+============		
==========		
0 Quadro P400 Off	00000000:03:00.0 Off	N/A
37% 50C P0 N/A / N/A	823MiB / 2048MiB	66% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===
==========|
| 0 N/A N/A 61181 C ...ib/jellyfin-ffmpeg/ffmpeg 821MiB |
+---+

Metadata
1. Metadata Providers
Every so often, Jellyfin does not automatically detect the movie/show you just added to your
library. In that case, you can use the Internet Movie Database (IMDB), as well as The Movie
Database (TMDB) as metadata providers. Simply head over to each site, search for your movie and
in the URL you will find the movie ID string, you need to specify in Jellyfin.

E.g. for 2001: A Space Odyssey the URLs look like this:

https://www.imdb.com/title/tt0062622/?ref_=fn_al_tt_1

https://www.themoviedb.org/movie/62-2001-a-space-odyssey

The highlighted strings are the IDs of the movie, which are unique identifiers, allowing Jellyfin to
lookup all the missing metadata on them. If you are adding a movie series, e.g. Harry Potter, you
can also specify a TheMovieDb Box Set Id . Luckily, you don't have to do that manually. Simply provide
the TMDB movie ID as usual and the Box Set ID will be added automatically (if the movie is part of
a series).

2. Manually editing a files Metadata
Sometimes when you acquire a video source, it can happen, that the metadata tags for it's video
etc. are packed with unnecessary comments and ads. To remove them, you can use mkvtoolnix for
MKV files. Simply run the following command, replacing the movie name with the one you want to
query:

The output for then looks something like this:

mkvinfo 'Filmname'

+ EBML head
|+ EBML version: 1
|+ EBML read version: 1
|+ Maximum EBML ID length: 4
|+ Maximum EBML size length: 8
|+ Document type: matroska
|+ Document type version: 4

|+ Document type read version: 2
+ Segment: size 1820877305
|+ Seek head (subentries will be skipped)
|+ EBML void: size 4044
|+ Segment information
| + Timestamp scale: 1000000
| + Multiplexing application: libebml v1.3.0 + libmatroska v1.4.1
| + Writing application: mkvmerge v6.5.0 ('Some Text') built on Dec 31 0000 00:00:00
| + Duration: 01:30:00.000000000
| + Date: Thu Dec 31 00:00:00 0000 UTC
| + Segment UID: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
|+ Tracks
| + Track
| + Track number: 1 (track ID for mkvmerge & mkvextract: 0)
| + Track UID: 0000000000000000000
| + Track type: video
| + Lacing flag: 0
| + Minimum cache: 1
| + Codec ID: V_MPEG4/ISO/AVC
| + Codec's private data: size 50 (h.264 profile: High @L4.1)
| + Default duration: 00:00:00.041708333 (23.976 frames/fields per second for a video track)
| + Language: und
| + Name: Some unwanted information
| + Video track
| + Pixel width: 1920
| + Pixel height: 1080
| + Display width: 1920
| + Display height: 1080
| + Track
| + Track number: 2 (track ID for mkvmerge & mkvextract: 1)
| + Track UID: 1353746707212659340
| + Track type: audio
| + Codec ID: A_AC3
| + Default duration: 00:00:00.000000000 (31.250 frames/fields per second for a video track)
| + Name: Some unwanted information
| + Audio track
| + Sampling frequency: 48000
| + Channels: 2
|+ EBML void: size 1099
|+ Cluster

Now to remove the 'Some unwanted information' metadata, simply run the following commands.
Please keep in mind, that you might have more or less tracks containing the metadata you want to
remove.

If you want to remove known metadata from a series of files, e.g. episodes of a show, you can also
make a small script:

mkvpropedit "Dateiname" --edit track:1 --edit track:2 --set name=""

#!/bin/bash
</br>
</br>for i in *.mkv; do
</br> [-f "$i"] || break
</br> mkvpropedit "$i"
--edit track:1 --edit track:2 --set name=""
</br>done

If you want to edit the metadata of e.g., an MP4 file, you can use the version of `ffmpeg`
Jellyfin installed in `/usr/lib/jellyfin-ffmpeg/ffmpeg`

Design Tweaks
1. Custom Theme/Skin

You can either install the SkinManager Plugin to try out a new look for Jellyfin, or directly edit CSS
in the Custom CSS section under the General settings. I experienced the SkinManager as pretty
unstable, so I chose to use the second option.

You can find the theme here: https://github.com/prayag17/JellySkin

2. Enable Backdrops for all users
Sadly, you cannot enable backdrops for all users from the settings. However, you can do this, by
editing the bundle.js file. To locate the file, run

Next, edit the file (here /usr/share/jellyfin/web/main.jellyfin.bundle.js) and replace this line

with the following one:

After that, restart Jellyfin and clear it's cache.

@import url("https://cdn.jsdelivr.net/gh/prayag17/JellySkin@latest/default.css");
@import url("https://cdn.jsdelivr.net/gh/prayag17/JellySkin/default.css");
@import url("https://cdn.jsdelivr.net/gh/prayag17/JellySkin@latest/addons/Logo.css");
@import url("https://cdn.jsdelivr.net/gh/prayag17/JellySkin/addons/Logo.css");
@import url("https://cdn.jsdelivr.net/gh/prayag17/JellySkin/addons/imp-per.css");
@import url("https://cdn.jsdelivr.net/gh/prayag17/JellySkin/addons/progress-bar.css");

.btnForgotPassword,

.btnQuick {
 display: none !important;
}

find / -name *.bundle.js | grep jellyfin
=> /usr/share/jellyfin/web/main.jellyfin.bundle.js

enableBackdrops:function(){return P}

enableBackdrops:function(){return x}

https://github.com/danieladov/jellyfin-plugin-skin-manager
https://github.com/prayag17/JellySkin

