
EasyBuild Modules Compiling automates the process of installing scientific software modules on
computing clusters or systems. It simplifies complex software builds and installations, providing a
unified and automated approach.

1. Select Software: Choose the software package you want to install. For example, let's
say you want to install the software package "example-software".

2. Build the Module: Use the eb command followed by the name of the software package
to build it. You can optionally include the --ignore-checksums option to ignore checksum
verification. For example:

eb -r . (--ignore-checksums) path/example-software.eb

the dot is the starting searching path for the Dependency modules. The -r stands for Robot it
searches for the Dependencies starting searching path. 3. Load the Module: After the module is
built, load it into your environment using the module load command. For example:

4. Verify Installation: You can verify that the software is installed correctly by checking its
version or running a basic command associated with it.

Suppose you want to install the software package "GROMACS" while ignoring checksum
verification. Here's how you would do it:

1. Build the Module:

eb -r . --ignore-checksums path/GROMACS.eb

2. Load the Module:

module load GROMACS

Modules Compiling

How to Run EasyBuild Module Compiling

module load example-module.eb

Example:

EasyBuild Recipe Example

When writing a recipe for EasyBuild, you'll create a .eb file for each software package you want to
build. This file contains instructions for EasyBuild on how to download, configure, build, and install
the software package. Here's a basic example of what an EasyBuild recipe file might look like:

The easyblock variable specifies the EasyBuild easyblock class for building the software package.
Easyblocks are Python classes that handle the build process. For example:

easyblock = 'AutotoolsMake'

name = 'example-software'

version = '1.0'

homepage = 'https://example.com'

sources = [SOURCE_TAR_GZ]

dependencies = [('GCC', '9.3.0')]

moduleclass = 'tools'

sanity_check_paths = {

 'files': [],

 'dirs': []

}

buildopts = {'toolchain': {'name': 'GCC', 'version': '9.3.0'}}

patches = [

 ('patch1.patch', 1),

 ('patch2.patch', 1)

]

moduleclass = 'tools'

preconfigopts = [

 './configure --prefix=$EBROOTEXAMPLE_SOFTWARE',

]

moduleclass = 'tools'

postinstallcmds = [

 'echo "Example software installation complete."'

]

This line sets the easyblock class to AutotoolsMake, suitable for packages using the Autotools build
system. Other common classes include CMake, PythonPackage, and MakeFile, each for different
types of software packages. This choice ensures EasyBuild applies the correct build logic and
commands for successful compilation and installation.

This is just a basic example, and the contents of the .eb file can vary depending on the specific
requirements of the software package you're building.

EasyBuild Documentation: https://easybuild.readthedocs.io
EasyBuild GitHub Repository: https://github.com/easybuilders/easybuild

High-Performance Computing (HPC)
Environment Modules
Lmod

EasyBuild Website
EasyBuild Community Wiki

High-Performance Computing
Software Development
Computational Science
Build Automation

easyblock = 'AutotoolsMake'

References

See Also

External Links

Categories

Revision #2
Created 6 June 2024 07:49:34 by Admin
Updated 12 June 2024 13:56:31 by Admin

https://easybuild.readthedocs.io
https://github.com/easybuilders/easybuild
https://www.easybuild.io/
https://easybuild.io/

